Hierarchical Classification of Emotional Speech
نویسندگان
چکیده
Speech emotion as anger, boredom, fear, gladness, etc. is high semantic information and its automatic analysis may have many applications such as smart human-computer interactions or multimedia indexing. Main difficulties for an efficient speech emotion classification reside in complex emotional class borders leading to necessity of appropriate audio feature selection. While current work in the literature only relies on classical frequency and energy based features and make use of a global classifier with a identical feature set for different emotion classes, we propose in this paper some new harmonic and Zipf based features for better emotion class characterization and a hierarchical classification scheme as we discovered that different emotional classes need different feature set for a better discrimination. Experimented on Berlin dataset [11] with 68 features, our emotion classifier reaches a classification rate of 76.22% and up to 79.47% when a first gender classification is applied, whereas current works in the literature usually display, as far as we know, a classification rate from 55% to 70%.
منابع مشابه
Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملHierarchical Clustering and Classification of Emotions in Human Speech Using Confusion Matrices
Although most of the natural emotions expressed in speech can be clearly identified by humans, automatic classification systems still display significant limitations on this task. Recently, hierarchical strategies have been proposed using different heuristics for choosing the appropriate levels in the hierarchy. In this paper, we propose a method for choosing these levels by hierarchically clus...
متن کامل